Additional Exercise from Scaffolding Box

This is a sample activity that helps foster understanding of a cube with fractional edge length. It begins with three (twodimensional) squares with side lengths of 1 unit, $\frac{1}{2}$ unit, and $\frac{1}{3}$ unit, which leads to understanding of three-dimensional cubes that have edge lengths of 1 unit, $\frac{1}{2}$ unit, and $\frac{1}{3}$ unit.

How many squares with $\frac{1}{2}$ unit side lengths will fit in a square with 1 unit side lengths?

Four squares with $\frac{1}{2}$ unit side lengths will fit in the square with 1 unit side lengths.

- What does this mean about the area of a square with $\frac{1}{2}$ unit side lengths? •
 - The area of a square with $\frac{1}{2}$ unit side lengths is $\frac{1}{4}$ of the area of a square with 1 unit, so it has an area of $\frac{1}{4}$ square units.

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

Lesson 11:

Volume with Fractional Edge Lengths and Unit Cubes 1/28/14

CC BY-NC-SA

• How many squares with side lengths of $\frac{1}{3}$ units will fit in a square with side lengths 1 unit?

• Nine squares with side lengths of $\frac{1}{3}$ unit will fit in the square with side lengths of 1 unit.

(1	2	3
1 unit	4	5	6
	7	8	9

- What does this mean about the area of a square with ¹/₃ unit side lengths?
 - The area of a square with $\frac{1}{3}$ unit side lengths is $\frac{1}{9}$ of the area of a square with 1 unit side lengths, so it has an area of $\frac{1}{9}$ square units.
- Let's look at what we've seen so far:

Side Length (units)	How many fit into a unit square?	
1	1	
$\frac{1}{2}$	4	
$\frac{1}{3}$	9	

Sample questions to pose:

- Make a prediction about how many squares with $\frac{1}{4}$ unit side lengths will fit into a unit square; then draw a picture to justify your prediction.
 - 16 squares

Volume with Fractional Edge Lengths and Unit Cubes 1/28/14

162

6•5

- How could you determine the number of ¹/₂ unit side length squares that would cover a figure with an area of 15 square units? How many ¹/₃ unit side length squares would cover the same figure?
 - 4 squares of $\frac{1}{2}$ unit side lengths fit in each 1 square unit. So if there are 15 square units, there will be $15 \times 4 = 60$.
- Now let's see what happens when we consider cubes of 1 unit, $\frac{1}{2}$ unit, and $\frac{1}{3}$ unit side lengths.

• How many cubes with $\frac{1}{2}$ unit side lengths will fit in a cube with 1 unit side lengths?

• Eight of the cubes with $\frac{1}{2}$ unit side lengths will fit into the cube with a 1 unit side length.

- What does this mean about the volume of a cube with $\frac{1}{2}$ unit side lengths?
 - The volume of a cube with $\frac{1}{2}$ unit side lengths is $\frac{1}{8}$ of the volume of a cube with 1 unit side lengths, so it has a volume of $\frac{1}{8}$ cubic units.

Volume with Fractional Edge Lengths and Unit Cubes 1/28/14

^a 27 of the cubes with $\frac{1}{3}$ unit side lengths will fit into the cube with 1 unit side lengths.

- What does this mean about the volume of a cube with ¹/₃ unit side lengths?
 - The volume of a cube with $\frac{1}{3}$ unit side lengths is $\frac{1}{27}$ of the volume of a square with 1 unit, so it has a volume of $\frac{1}{27}$ cubic units.

Let's look at what we've seen so far:

Side Length (units)	How many fit into a unit cube?	
1	1	
$\frac{1}{2}$	8	
$\frac{1}{3}$	27	

Sample questions to pose:

- Make a prediction about how many cubes with $\frac{1}{4}$ unit side lengths will fit into a unit cube, and then draw a picture to justify your prediction.
 - 64 cubes
- How could you determine the number of ¹/₂ unit side length cubes that would fill a figure with a volume of 15 cubic units? How many ¹/₂ unit side length cubes would fill the same figure?
 - ^a 8 cubes of $\frac{1}{2}$ unit fit in each 1 cubic unit. So if there are 15 cubic units, there will be 120 cubes because $15 \times 8 = 120$.

Lesson 11: Date: Volume with Fractional Edge Lengths and Unit Cubes 1/28/14

164

Understanding Volume

Volume

- Volume is the amount of space inside a three-dimensional figure. ٠
- It is measured in cubic units. ٠
- It is the number of cubic units needed to fill the inside of the figure. ٠

Cubic Units

- Cubic units measure the same on all sides. A cubic centimeter is one centimeter on all sides; a cubic inch is ٠ one inch on all sides, etc.
- ٠ Cubic units can be shortened using the exponent 3. $6 \text{ cubic cm} = 6 \text{ cm}^3$
- Different cubic units can be used to measure the volume of space figures cubic inches, cubic yards, cubic ٠ centimeters, etc.

Volume with Fractional Edge Lengths and Unit Cubes 1/28/14

